domingo, 29 de dezembro de 2013

Ano Novo

Que neste ano tu consigas
Aquele tão sonhado amor
Aquele tão querido presente
Que tem o mais nobre valor.

Que tu tenhas muita sorte
E muita paz também
E que quando fizeres um pedido
Um anjinho diga Amém.

Que o teu entusiasmo
Contagie a todo mundo
As crianças e os jovens
Do adulto ao moribundo.

Que em teu olhar brilhe
Os mais lindos sentimentos,
E que teu coração tenha
O maior contentamento.

Que o Novo ano que vem
Traga-te prosperidade
E junto com a harmonia
 Traga-te felicidade.

Que teus planos deem certo
Que tu tenhas o que sempre quis
Que Deus realize teus sonhos
E que tu tenhas um ano feliz…



Kah Moreira: "Ano Novo". Dezembro de 2013.
Esta obra está licenciada sob uma Licença Creative Commons. Deve ser citada conforme especificado acima.

Licença Creative Commons
Este obra de Kah Moreira está licenciado com uma Licença Creative Commons Atribuição-NãoComercial-SemDerivações 4.0 Internacional.
Baseado no trabalho disponível em http://livredialogo.blogspot.com.br/.
Podem estar disponíveis autorizações adicionais às concedidas no âmbito desta licença em discente.farias@gmail.com.

sexta-feira, 27 de dezembro de 2013

Soneto da esperança

Vai ficar tudo bem, você vai ver.
Enfrente os problemas de cabeça erguida,
Pense no quão chato, seria não ter,
Nenhum desafio na vida.

A sós nunca vai estar, acredite,
Segue trilhando sua estrada,
Quem faz seu rumo, e traça seu destino,
São os passos que der ao longo do caminho.

Enquanto respirar ainda há esperança.
E quando as forças estiverem acabando,
Lembre-se dos seus sonhos de quando criança.

Uma criança que nunca se sente sem chão,
É alento para enfrentar seus problemas
Antes que o tempo escorra por suas mãos.



Kah Moreira: "Soneto da esperança". Dezembro de 2013.
Esta obra está licenciada sob uma Licença Creative Commons. Deve ser citada conforme especificado acima.

Licença Creative Commons
Este obra de Kah Moreira está licenciado com uma Licença Creative Commons Atribuição-NãoComercial-SemDerivações 4.0 Internacional.
Baseado no trabalho disponível em http://livredialogo.blogspot.com.br/.
Podem estar disponíveis autorizações adicionais às concedidas no âmbito desta licença em discente.farias@gmail.com.

Alcoolismo hoje.

O consumo de álcool está engessado no comportamento humano por diversos fatores histórico-culturais. Quase todas as sociedades, por mais afastadas que estivessem entre si, tanto geográfica quanto temporalmente, desenvolveram alguma forma de ópio para facilitarem o enfrentamento de suas frustrações ou regar suas celebrações.

Durante o Império romano, os imperadores e boa parte da população, principalmente os que ocupavam lugar de destaque, consumiam álcool amiúde, tanto ou mais que água. Em função disso, passagens épicas como a de Nero pondo fogo em Roma, são hoje pensadas como uma consequência direta ou indireta do excessivo consumo de álcool que, à época, continha um tóxico empregado para a conservação da bebida, o qual produzia efeitos psico-neurológicos consideráveis e permanentes; além disso, muitos dos vasilhames utilizados para consumir ou armazenar vinho eram criados em materiais igualmente tóxicos, como o chumbo.

Entretanto, hoje os tempos são outros e, de posse de um vasto conhecimento científico, a sociedade remodelou os modos de produção e consumo de bebidas, a pesar de mantê-lo, em diversos casos, tal como o faziam os romanos.

Ainda hoje muitas pessoas com problemas de ordem social, financeira, sentimental, etc., utilizam-se não somente da bebida, como também de outras drogas, para se refugiarem da realidade. O álcool serve-lhes como que um anestésico à dor das frustrações, dos medos; um sistema de polias ao peso das responsabilidades inerentes ao ato de viver. Assim, tais indivíduos vão afastando-se não apenas do enfrentamento dos fatos como também dos seus. Em diversos casos, como exemplificado no livro de Andréa Ilha, o vício dos pais compromete a saúde das relações familiares em um nível tão sério que os filhos e mesmo outros membros da família passam a ser afetados.

Hoje, contudo, cada vez mais cedo os jovens iniciam-se à vida “boêmia”, talvez por um efeito de pressão social, onde os que fazem uso da bebida, dentre outros, são mais bem aceitos.

Além disso, há ainda a apologia midiática: comumente veem-se propagandas de cervejarias onde o consumo do produto torna um indivíduo, a princípio ignorado e desinteressante a certo grupo “popular”, subitamente “descolado” e atraente – nisso entra também o apelo sexual, onde belas modelos com pouca roupa são utilizadas como que o “prêmio” pelo consumo da bebida.

Mas a verdade é que a coisa não é bem assim. Ademais de causar grave dependência, o álcool conduz a enfermidades muitas vezes irreversíveis, tal como a cirrose, sendo inclusive um dos principais protagonistas de acidentes automobilísticos fatais, como no caso dos pais da protagonista de “A menina que veio de longe”, Dulcinéa, cuja vida começavam por ordenar.


Desta maneira, compreende-se que atualmente o alcoolismo constitui-se um problema social que, apesar do reconhecimento, é apoiado de certa maneira pela mídia, uma vez que seja uma fonte de lucro bastante atrativa, sobretudo às cervejarias e às instituições por elas financiadas. Parece, porquanto, um pouco intangível extirpar do étos social o prazer pela bebida, sendo, por conseguinte, necessário por parte do Estado e das próprias famílias conscientizar os jovens quanto ao uso do álcool e empreender na ajuda àqueles que dele fizeram-se reféns.

Farias, M.S.: "Alcoolismo hoje". Dezembro de 2013.
Esta obra está licenciada sob uma Licença Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported. Deve ser citada conforme especificado acima.

Licença Creative Commons
Baseado no trabalho em livredialogo.blogspot.com.br.
Permissões além do escopo dessa licença podem estar disponível em discente.farias@gmail.com

sexta-feira, 20 de dezembro de 2013

Isomeria

Introdução

Até o presente momento se tem estudado boa parte das funções orgânicas da Química, de modo que se pode distinguir, através da representação estrutural planificada, a natureza do composto – éter, cetona, aldeído, ácido, etc.
Todavia, a fórmula molecular tão-somente não é uma informação bastante para se compreender efetivamente do que se trata certo produto: dependendo da organização dos elementos das moléculas obtêm-se distintos compostos, como é o caso do C2H4O2 que pode originar um ácido, um éster e substância de função mista.
É justamente esta particularidade de determinados compostos de apresentarem fórmula molecular, plana, centesimal ou empírica iguais e divergirem, em maioria dos casos, quanto à natureza físico-química a que se denomina Isomeria.

No presente objeto de estudos falar-se-á acerca dos distintos tipos de isomeria, a saber: 1.ª Plana: (a) de cadeia ou núcleo; (b) de posição; (c) de compensação ou metameria; (d) de grupo funcional ou função; (e) tautomeria. 2ª. Espacial ou estereoisomeria: (a) geométrica; (b) óptica.

Isomeria Plana

As representações planificadas das estruturas atômicas são um grosso modo de representar moléculas, pois estas se formam sempre no espaço, ou seja, são complexas organizações tridimensionais de elementos químicos. Não obstante, esta pouco elaborada forma de demonstração sobre como os átomos organizam-se em uma molécula é suficientemente clara para que se possam analisar todos os isômeros possíveis à determinada fórmula.
Destarde, conforme o tipo de cadeia, a posição dos elementos ou a relativa localização de um hetero-átomo ou insaturação, o fato de isômeros obtidos pertencerem ou não à mesma função, ter-se-á uma classificação específica de isomeria plana.

v Isomeria de cadeia ou de núcleo: dá-se quando, pertencendo à mesma função orgânica, os isômeros diferem apenas quanto à disposição e/ou presença de (in)saturação da cadeia carbônica. Tome-se, por exemplo, o C3H6:


v Isomeria de posição: apresenta o mesmo tipo de cadeia e classe funcional diferindo apenas quanto à posição relativa de uma insaturação ou radical funcional (OH; NH; O; Cl; CH3). Por exemplo, tem-se: C18H30O2 e C3H8O:





v Isomeria de compensação ou Metameria: trata-se de um caso particular de isomeria que se baseia na posição relativa de um heteroátomo. É assim denominada porque a quantidade de átomos de carbono que aumenta ou diminui em cada lado do heteroátomo é proporcional à quantidade de carbonos que aumenta ou diminui do outro lado correspondente. Por exemplo, C4H10O:


v Isomeria funcional ou de função: compreende esta classificação aos casos em que, dependendo da posição relativa de heteroátomos e/ou insaturações, ocorre a mudança de uma função química para outra; ou seja, são os casos em que uma mesma fórmula molecular origina compostos de diferentes funções. Por exemplo, C2H4O2:



v Tautomeria ou isomeria dinâmica: trata-se de um caso muito particular de isomeria funcional que ocorre em soluções. Dá-se quando dois isômeros – chamados tautômeros – coexistem em equilíbrio dinâmico, transformando-se um no outro por meio da migração de um átomo de hidrogênio na molécula.
Os dois casos de tautomeria mais utilizados no estudo da Química orgânica em nível de Ensino Médio são:

ü  Tautomeria aldo-enólica: dá-se entra aldeído e enol, que possuam no mínimo dois átomos de carbono. Por exemplo, tem-se C2H4O:


ü  Tautomeria ceto-enólica: ocorre entre cetonas e enóis que possuam no mínimo três átomos de carbono. Por exemplo, C3H6O:


Isomeria espacial ou estereoisomeria

A isomeria geométrica abrange os casos de isômeros que somente podem ser esclarecidos através de fórmulas estruturais espaciais, sendo insuficientes as fórmulas planas até então vistas. Subdivide-se em:

v Isomeria geométrica ou cis-trans: somente ocorre em compostos de cadeia aberta que possuem dupla ligação entre átomos de carbono ou em cadeias cíclicas. 

v Cis-trans de cadeia aberta: para que ocorra é necessário que o composto apresente ao menos uma dupla ligação entre átomos de carbono e que cada um dos carbonos da dupla contenha grupos ligantes diferentes. Tome-se, por exemplo, C2H2Cl2:


A fim de facilitar a análise das cadeias geométricas usa-se traçar uma linha imaginária ao longo da dupla ligação, conforme exemplificado acima. Sempre que os grupos ligantes (em nosso caso o Cl) estiverem de um mesmo lado da linha considerada, então a cadeia será “cis”; se os grupos ligantes estiverem em lados opostos da linha, então a cadeia será “trans”, conforme demonstram os exemplos supracitados.

Quando as cadeias são um tanto mais complexas e apresentam diversos ligantes todos diferentes entre si, usa-se considerar o de maior número atômico para determinar se se trata de cadeia “cis” ou “tans”. Por exemplo:


v Cis-trans em cadeias cíclicas: neste particular não é imperiosa a existência de dupla ligação, conquanto que em ao menos dois carbonos da cadeia existam dois ou mais grupos de ligantes diferentes. Não obstante, neste tipo de isômero os ligantes de cada átomo considerado, por mais diversos que sejam, devem ser os mesmos do outro átomo analisado. Por exemplo:


Note-se que foram consideradas, na análise acima, as ramificações da cadeia e que ambos os carbonos ramificados possuíam ligações com CH3 e H. Ou seja, individualmente possuíam grupos ligantes diferentes, porém, os mesmos do outro átomo, logo, permitindo que a cadeia apresente isomeria geométrica.

Para simplificar, alguns dos autores pesquisados consideram que basta verificar se existem no ciclo dois carbonos, não necessariamente próximos, com dois ligantes diferentes.

Quando a cadeia cíclica possui apenas um ligante fora do ciclo, a pesar de conter dupla ligação, ela não é um isômero cis-trans. Veja-se a exemplificação:


v Isomeria óptica: trata-se de um caso muito particular de isomeria em que as moléculas, sendo assimétricas, quando atingidas por um feixe de luz polarizada, tendem a desviá-lo ou em sentido horário (dextrorrotatório ou dextrogiro, representado pela letra d) ou em sentido anti-horário (levorrotatório ou levogiro, representado pela letra l). Assim, alguns autores, a fim de explicarem tal comportamento, comparam o fenômeno como que se colocando a molécula assimétrica frente a um espelho, cuja imagem refletida será o isômero conhecido por óptico ou enantiomorfo ou, ainda, enantiômero.
Consideremos, para efeito de ilustração, o elemento de fórmula molecular CHBrClF:


Todavia, como o nível de estudos atual descarta a possibilidade de experiências laboratoriais complexas e mesmo porque a título de estudos, em termos gerais, interessa a análise da fórmula estrutural representada sobre um plano é que se deverá considerar como referencial determinante à presença ou ausência de moléculas assimétricas a existência ou não de carbono quiral, também conhecido por centro quiral ou carbono assimétrico.

“A assimetria molecular estará presente se houver um carbono que faça quatro ligações simples e que esteja ligado a quatro grupos diferentes. [...] A presença de um carbono quiral é condição suficiente para a isomeria óptica.” (MIRAGAIA & CANTO, 2006).

Ou seja, o carbono quiral será aquele que estiver ligado a quatro grupos distintos. Utilizemos como exemplo a representação planificada do elemento CHBrClF, acima representado tridimensionalmente.



Perceba que o carbono – destacado com um asterisco (*), conforme as convenções da Química Orgânica – é o carbono assimétrico, pois está ligado a quatro distintos grupos: Cloro (Cl); Oxigênio (O); Bromo (Br); Hidrogênio (H).

Quando o carbono possuir uma ligação dupla, tripla ou duas duplas, ele não será o carbono quiral, pois a configuração geométrica da estrutura será simétrica.

v Isomeria óptica em compostos cíclicos: para que tal exista a estrutura não poderá ter forma simétrica, devendo cada carbono conter ligantes fora do ciclo; quando analisada no sentido horário, a cadeia deverá apresentar percurso diferente de quando analisada em sentido anti-horário. Vejamos as exemplificações:



A fim de que se determine qual dos carbonos assinalados (A,B,C,D,E) é o carbono central, devemos analisar, primeiro, as ligações que eles tecem. Assim, notaremos que A, B e C possuem duas ligações iguais e nenhuma fora da cadeia, logo, acatando a regra já vista, não podem sê-lo. Restam dois carbonos, D e E, que possuem duas das quatro ligações diferenciadas, sendo as outras duas ligadas à cadeia. Para que se determine qual deles é quiral dever-se-á analisar a cadeia concomitantemente em sentido horário e anti-horário.

Considerações Finais
Embora não seja uma situação comum ao quotidiano, avaliar certos produtos cujas informações vêm transcritas em fórmula molecular pode ser um perigoso engano, haja vista que diversos compostos podem surgir em função do arranjo das partículas. Contudo, verdade seja dita, é algo muito raro alguém analisar as informações técnicas/químicas do que seja no supermercado ou qualquer outro local; a miúde tais observações cabem a agricultores e funcionários de laboratórios de química ou hospitalar, onde o manejo de substâncias requer extremo cuidado.
É fácil imaginar o porquê de em um laboratório esse conhecimento ser imprescindível, mas um tanto mais difícil em relação aos agricultores. Pois bem, fazendas de grande porte – e mesmo algumas de médio porte – necessitam afastar pragas de suas plantações ou rebanhos. Os produtos utilizados para isso possuem concentrações bastante elevadas de venenos e outros tóxicos, de modo que a aplicação de um produto inadequado ou de procedência duvidosa pode acarretar imensos prejuízos tanto financeiros quanto legais ou de saúde do ecossistema e dos manejadores.
Os isômeros, de um ponto de vista estritamente técnico, são importantíssimos para o estudo amplo e aprofundado da química orgânica, pois permitem uma melhor compreensão de como se comportam os átomos dentro da molécula e, por sua vez, como agem as soluções ou como se dão as reações químicas.
Particularmente, a isomeria óptica parece ser a mais interessante de todas, embora a mais difícil de estudar, também. As primeiras substâncias opticamente ativas (SOA) conhecidas eram compostos minerais na forma cristalina, como o quartzo (SiO2) e o clorato de potássio (KClO3), por exemplo.
Pasteur foi o primeiro químico de que se tem notícia a separar os cristais responsáveis pela isomeria óptica, no caso cristais de ácido tartárico, que ele dividiu manualmente, utilizando-se de uma lupa. Ele, primeiramente, e mais tarde alguns outros cientistas, percebeu que esses cristais tinham em comum a forma assimétrica e que, quando dissolvidos ou fundidos, a substância tornava-se opticamente inativa (SOI). Assim, inferiu-se que tal fenômeno dava-se em função exclusiva da assimetria cristalina, não havendo relação com a natureza química da substância.
Nos primórdios do século XX, um cientista chamado Biot descobriu que, dentre outras, as soluções de ácido tartárico, cana-de-açúcar e cânfora apresentavam poder rotatório. Ele afirmou, portanto, que a assimetria deveria ocorrer dentro da própria molécula da substância. Posteriormente, Kekulé conseguiu desenvolver ainda mais as fórmulas estruturais fazendo surgir o conceito de carbono assimétrico como sendo o átomo Tetracovalente (Teoria da Tetracovalência do carbono), ou seja, o átomo de carbono que troca suas quatro valências com radicais distintos.
O conhecimento da função rotatória das moléculas foi também muito importante para a compreensão da isomeria geométrica: uma molécula somente será isômero cis-trans se não houver movimento giratório da molécula; quando alifática este movimento é impedido pela dupla; quando cíclica analisa-se a impossibilidade de movimento para determinar se ela pode ou não ser isômero – lembrem-se dos exemplos acima: a cadeia cíclica cuja rotação era permitida, apesar da dupla (1,2-dimetil-ciclopropano) não servia para isômero geométrico.
Um ponto importante a se considerar: na isomeria geométrica de compostos cíclicos a dupla ligação não impede a rotação, mas sim o arranjo dos elementos: a presença no ciclo de dois carbonos com dois ligantes diferentes.
Por fim, cabe mencionar que a química orgânica é também empregada na Biologia para, por exemplo, estudar o comportamento dos aminoácidos no organismo humano, como também as reações físico-químicas ocasionadas pela ingestão de medicamentos, alimentos e/ou bebidas. 

***
Referências:

http://answers.yahoo.com/question/index?qid=20090112144416AAGU0eb
http://en.wikibooks.org/wiki/Organic_Chemistry/Print_version
http://pt.wikipedia.org/wiki/%C3%94mega_3
http://pt.wikipedia.org/wiki/August_Kekul%C3%A9
http://pt.wikipedia.org/wiki/F%C3%B3rmula_emp%C3%ADrica
http://pt.wikipedia.org/wiki/Geometria_molecular
http://pt.wikipedia.org/wiki/Isomeria_nuclear
http://quimicaorganicacursinho.blogspot.com.br/2012_07_01_archive.html
http://quimicasemsegredos.com/documents/Loja/Isomeria-PPT.pdf
http://quimicasemsegredos.com/isomeria-optica.php
http://www.alunosonline.com.br/quimica/formula-minima-ou-empirica.html
http://www.brasilescola.com/curiosidades/omega-3.htm
http://www.brasilescola.com/quimica/formula-percentual-ou-centesimal.htm
http://www.brasilescola.com/quimica/isomeria-compensacao-ou-metameria.htm
http://www.brasilescola.com/quimica/isomeria-Optica.htm
http://www.colegioweb.com.br/trabalhos-escolares/quimica/isomeria/isomeria-de-cadeia.html
http://www.colegioweb.com.br/trabalhos-escolares/quimica/isomeria/isomeria-de-posicao.html
http://www.colegioweb.com.br/trabalhos-escolares/quimica/isomeria/isomeria-de-compensacao-ou-metameria.html
http://www.ebah.com.br/content/ABAAABRMIAK/radioatividade
http://www.infoescola.com/quimica/isomeria/
http://www.infoescola.com/quimica/isomeria-de-cadeia/
http://www.mundoeducacao.com/quimica/isomeria-cadeia.htm
http://www.mundoeducacao.com/quimica/isomeria-compensacao-ou-metameria.htm
http://www.mundoeducacao.com/quimica/isomeria-optica.htm
http://www.mundoeducacao.com/quimica/isomeria-posicao.htm
http://www.supplementquality.com/news/fatty_acid_structure.html
http://www.ufjf.br/cursinho/files/2012/05/Apostila-de-Qu%C3%ADmica-4-108.136.pdf
ISOMERIA: In: BENTON, William. Enciclopédia Barsa. Rio de Janeiro, São Paulo: Encyclopedia Britannica Editores LTDA. 1964 – 1969; p.: 73b -75b. Tomo 08.
Peruzzo, Francisco Miragaia. Química na abordagem do cotidiano. 3º v. 4ª ed. São Paulo: Moderna, 2006.

ANEXOS¹


v Fórmula Percentual ou Centesimal: é possível fazer essa determinação centesimal porque, como mostra a Lei das Proporções Constantes de Proust, as substâncias puras sempre apresentam os mesmos elementos combinados na mesma proporção em massa. Além disso, essa é uma propriedade intensiva, isto é, não depende da quantidade da amostra. A fórmula percentual é importante, pois ela é o ponto de partida para se determinar as outras fórmulas químicas dos compostos, como a fórmula mínima ou empírica e a fórmula molecular.

A fórmula matemática usada para calcular essa porcentagem é dada por:

Por exemplo: “Determine a fórmula percentual de um sal inorgânico, sendo que a análise de sua amostra indicou que em 50 g dessa substância existem 20 g de cálcio, 6 g de carbono e 24 g de oxigênio”:

Porcentagem de massa do cálcio = 40%

Porcentagem de massa do carbono = 12%

Porcentagem de massa do oxigênio = 48%

Ca40%C12%O48%

***

v Fórmula Mínima ou Empírica: A fórmula mínima ou empírica indica a menor proporção, em números inteiros de mol, dos átomos dos elementos que constituem uma substância. Podemos determinar a fórmula empírica a partir da Fórmula Percentual, dividindo cada percentual pela massa atômica de cada elemento.

Por exemplo:

“Considerando uma amostra de 100g, as porcentagens em massa nos permitem
concluir que a substância contém 75 g de carbono e 25 g de hidrogênio. Dividindo
esses valores pelas respectivas massas molares, temos:”


Esses valores indicam a proporção entre os elementos, porém, não são a menor proporção e nem estão em números inteiros. Para conseguirmos isso, basta dividir os dois valores pelo menor deles, que no caso é o 6,25. Isso pode ser feito porque quando dividimos ou multiplicamos uma série de números por um mesmo valor, a proporção que existe entre eles não é alterada.


Portanto, a fórmula mínima/empírica desse composto é: CH4.

[1] Anexos extraídos diretamente dos sites.


Farias, M.S.: "Isomeria". Dezembro de 2013.
Esta obra está licenciada sob uma Licença Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported. Deve ser citada conforme especificado acima.

Licença Creative Commons
Baseado no trabalho em livredialogo.blogspot.com.br.
Permissões além do escopo dessa licença podem estar disponível em discente.farias@gmail.com

sábado, 14 de dezembro de 2013

Sobre o que esperar...




      A dor que julgo carregar não se compara a felicidade da qual disponho todos os dias. Sempre achei sorrisos dispensáveis, mas hoje a opinião é outra. Talvez seja a idade que cresce ou a sabedoria que se aumenta, enquanto percorro os caminhos que me são destinados aprendo e envelheço. Não que julgue a idade um fator determinante em questão de conhecimento – muito pelo contrário! – mentes são inquietas e trovejantes independentes de quando sua mocidade ocorre. Também pensamentos são calmos e construtores sejam lá quais forem os seus tempos de vida.

     "O que não nos mata nos ensina a viver."
     A fraqueza do corpo também nada tem a ver com a força da alma, portanto se és forte em corpo e alma ganhas ainda mais. Não foi por pouco que nos foi dito que haviam pedras no caminho e que no caminho haviam pedras, elas estão lá a procura de quem não as esqueça... A procura de quem aprenderá que nada mais vale do que enfrentá-las e empurra-las para fora do caminho.
    Tento convencer-me do que digo e ainda mais do que escrevo, pois o futuro é isso, deixar do que tens. Quando individuo qualquer dizer-lhes que o futuro já vem despeça-se do que adquiriu (deixe apenas os ensinamentos aprendidos), treine o desapego, calce os sapatos de caminhada, pois o futuro não espera nada nem ninguém. 


  Farias, Maikéle. "Sobre o que esperar...". Dezembro de 2013. http://livredialogo.blogspot.com.br/
Esta obra está licenciada sob uma Licença Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported. Deve ser citada conforme especificado acima.
  
Licença Creative Commons
Baseado no trabalho em livredialogo.blogspot.com.br.
Permissões além do escopo dessa licença podem estar disponível em discente.farias@gmail.com.
 
Licença Creative Commons
Diálogo Livre de Farias, M. S. et alia é licenciado sob uma Licença Creative Commons Atribuição-Uso não-comercial-Vedada a criação de obras derivadas 3.0 Unported.
Baseado no trabalho em livredialogo.blogspot.com.br.
Permissões além do escopo dessa licença podem estar disponível em discente.farias@gmail.com.